skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shin, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY Single cell genomics has revolutionized our understanding of neuronal cell types. However, scalable technologies for probing single-cell connectivity are lacking, and we are just beginning to understand how molecularly defined cell types are organized into functional circuits. Here, we describe a protocol to generate high-complexity barcoded rabies virus (RV) for scalable circuit mapping from tens of thousands of individual starter cells in parallel. In addition, we introduce a strategy for targeting RV-encoded barcode transcripts to the nucleus so that they can be read out using single-nucleus RNA sequencing (snRNA-seq). We apply this tool in organotypic slice cultures of the developing human cerebral cortex, which reveals the emergence of cell type– specific circuit motifs in midgestation. By leveraging the power and throughput of single cell genomics for mapping synaptic connectivity, we chart a path forward for scalable circuit mapping of molecularly-defined cell types in healthy and disease states. 
    more » « less
  2. Free, publicly-accessible full text available November 15, 2025